GeoStyle: Discovering Fashion Trends and Events

Utkarsh Mall1 Kevin Matzen2 Bharath Hariharan1 Noah Snavely1 Kavita Bala1
1Cornell University 2Facebook

Contributions

- Detecting and predicting fashion trends over space and time
- A fully-automated framework for fashion trend discovery.
- Accurately model and forecast long-term trends, like seasonal cycles.
- Discover and group short-term spikes caused by events, like rallies, festivals and sporting events.
- Automatically discover the reasons for these events.

Stage I - Recognition

- Classify attributes from StreetStyle1.
- Aggregate probability values at each time & city.

Stage II - Characterizing Trends

- Interpretable, expressive parametric model capturing linear and cyclical trends.

\[f(t) = (1 - r) \cdot L(t) + r \cdot C(t) \]

\[L(t) = m_{\text{lin}} \cdot t + c_{\text{lin}} \]

\[C(t) = m_{\text{cyc}} \cdot \text{sin}(w \cdot t + \phi) - k \]

\textbf{Parameter} \quad \textbf{Interpretable meaning}

- \(r \): Trade-off between linear and cyclic trend
- \(m_{\text{lin}} \): Rate of long-term change in popularity
- \(m_{\text{cyc}} \): Amplitude and sign of cyclical spikes
- \(k \): Spikiness of cyclical spikes

Stage III - Discovering Events

- Find outliers using hypothesis testing framework.
- Group outliers based on proximity and periodicity.

Stage IV - Mining Reasons for Events

- Use TF-IDF on captions to identify words most representative of an event.

Pipeline

1 SNE of dataset images

Attribute Recognition & Style Discovery

Stage I - Recognition

44 cities

3 years (June 2013-May 2016)

7.7 million images

Instagram+Flickr100m

Stage II - Characterizing Trends

Stage III - Discovering Events

Stage IV - Mining Reasons for Events

100% of the top 35 events are explainable by captions.

Popular events around the world using representative styles

Styles are discovered by clustering in embedding space1.

A fully-automated framework for fashion trend discovery.

Models trends using prior understanding results in more accurate and interpretable forecasting models.

20% improvement in prediction error rate v/s VAR.

A total of 725 events discovered of which 456 are interpretable as seasonal sporting events, festivals or political rallies.

Text combined with visual features helps in explaining events.

References

Acknowledgment

This work was funded by NSF (CHS: 1617861 and CHS:1513967) and an Amazon Research Award.

Future Work

- Extending the method for other domains and datasets.
- Analysis at a fine-grained level.
- Looking at methods to alleviate bias due to dataset.

Take-away

- Accurate, fine-grained prediction of trends

- Discovers new events unknown to the authors

- "Catalan way" 2013 Sep in Barcelona

Results

Due to space limitations, we refer the reader to the full version of this paper for more details.